TUBITAK | MARMARA RESEARCH CENTER January, 2019

MAM

SCIENCE TO TECHNOLOGY TECHNOLOGY TO INDUSTRY

Transition to Autonomous and Connected Vehicles

Abdulehad ÖZDEMİR

THE SCIENTIFIC AND TECHNOLOGICAL RESEARCH COUNCIL OF TURKEY

The Frequency of Disruptive Technologies

THE INCREASING PACE OF CHANGE

TECHNOLOGY ADOPTION - YEARS UNTIL USED BY 25% OF AMERICAN POPULATION

Breakthrough Technologies

Alternative Energy Sources

Collaborative Data Monetization

Machine Learning

Autonomous Vehicles

- Simplified User Controls
- Advanced Driver Assistance Systems
- Autonomous Drive

By 2035, the annual global sale of fully autonomous vehicles might be more than 12 million. By 2035, partially autonomous vehicles can have an annual global sale of 18 million. From 2025 to 2035, the market for partially and fully autonomous vehicles is expected to grow between \$42 billion and \$77 billion.

ACCELERATING INTO THE FUTURE

By 2035, 25% of the new car market might be captured by autos with autonomous vehicle features.

Vehicle Connectivity

Future of Mobility

"The auto industry is poised for more change in the next five to ten years than it's seen in the past 50." "For more than 100 years the automotive industry has created competitive advantage mainly through engineering excellence. Going forward, this will no longer be sufficient."

World's Top 20 R&D Spenders

In the World's Top 20 R&D Spenders there are 6 automotive OEMs.

Technology Developers

Implications of Transition

Potential Barriers and Setbacks

Technological Barriers

- Potential Component Level Mulfunctions
- Protection against cybersecurity threats
- Data theft and sabotage risks

Standardization / Regulatory Setbacks

- Development of technical strandards
- Improving highway infrastructure
- Having up-to-date and accurate maps
- Clarification of legal liabilities
- Regulatory Approval Procedures

Customer Concerns

- Assurance of safety & reliability
- Vehicle purchase cost
- Potential loss of privacy
- Ethical issues

«Drivers shouldn't have to choose between being connected and being protected»

Smart Mobility Clustering

Electromobility	Autonomous Vehicles	V2X	Smart Transportation Management
 Powertrain Chassis Interior, Exterior Body Energy Storage Systems Vehicle Integration E-Charge 	 Advanced Driver Assistance Systems Autonomous Vehicles Hardware Development Control Algorithm 	 Hardware Development Software Development Communication Protocols 	 Big Data IoT Planned Public Transportation

In TUBITAK MRC, we have been working on electric vehicle technologies in the past 15 years as being the only institution that have the associated experts and infrastructure in the country.

Excellence Centers

- Hybrid and Electric Vehicle Excellence Center
- Automotive Excellence Center
- Engine Excellence Center

Infrastructure

- Active Material Development Labs
- Battery Testing Systems
- Electric Motor Dynos
- Electronic Design and Testing Labs
- Internal Combustion Engine Dynos
- Climatic Dual Axle Chassis Dyno
- Emissions Test Labs

THANK YOU

SCIENCE TO TECHNOLOGY TECHNOLOGY TO INDUSTRY

abdulehad.ozdemir@tubitak.gov.tr